Category: "Funny-strange ice"

Martini Hoar (raise a tiny glass?)

October 19th, 2019

The hoar-frost crystal shoots up like a thin, solid straw, then suddenly opens up into a cup-like shape. I have seen it often enough to give it a name: "martini hoar".

Martini Hoar (raise a tiny glass?)


The cup can be weirdly segmented and polyhedral, but it nevertheless widens suddenly. Here are a few more (Sorry for poor photos—someday, I hope, I'll get better about photography.)

Martini Hoar (raise a tiny glass?)



Here is a larger view of the region. Note the similar hoar coming down from the top, but without a clear view of the base.

Martini Hoar (raise a tiny glass?)


This sudden widening feature has bothered me for awhile, but I was delighted the other day to figure out a plausible reason. My delight was made even greater because the reason involved measurements I made in the lab two decades back. The measurements were to understand snow-crystal habit, but apply equally well to hoar frost because hoar grows just like snow except it is attached to the ground.



Now that I have viewed some of the older pictures I took, the actual growth phenomenon looks more complicated in terms of crystal shape, so I am not so sure my reasoning explains things so simply. Nevertheless, it should apply well to many cases, and at least is worth learning because it involves important growth principles that also apply to snow.

Read more »

Sheet icicles

November 6th, 2017

On a bitter cold day in 2013, I was at a familiar cliff, climbing under a large rock ceiling. A little water had been seeping down through the crack above, forming an ice-filled crack that I had to dig out with my hammer to proceed. In a few spots, the water drips had detoured, meandering along the granite ceiling and freezing into very thin s-curved ribbons of ice. I'd never seen any drip formation so bizarre, or even seen a picture of anything like them. But my camera was far below, and I had to regretfully blast through the ice to proceed.



Recently I came across another thin, sheet-like ice formation on a small tree under a drip. In this case, the sheets followed a twig, and thus did not meander in s-curves. But they were similarly thin and sheet-like. Call them "sheet icicles". This time I had my camera handy.



Here's an overview of the drip formation.

Sheet icicles


And a close-up of one of the sheet icicles.
Sheet icicles


Read more »

Concentric Film Frost

October 25th, 2017

October 16, 2017, the first frost of the 2017-18 winter as far as I know. Frost in Eastern Washington anyway, those of us on the west side of the Cascade Mts have not gotten any yet. Marc Fairbanks, an avid nature observer from the mountains near Cle Elum, sent me the following shot (click on the image to fully appreciate the pattern).

Concentric Film Frost


This is primarily film-frost, that is, is based on ice that formed when liquid film froze. But as I discussed in a previous post, some important growth processes here also occur through the vapor phase:

http://www.storyofsnow.com/blog1.php/crystal-to-crystal-communication-through-vapor-and-heat

I had even earlier noted some "ripple" patterns on a windshield and mused about their formation:

http://www.storyofsnow.com/blog1.php/ripples


As I'll discuss next, there are some other illuminating observations here.

Read more »

Lots of Hair Ice

December 19th, 2014

My older sister sent me this photo on a recent morning.


This is hair ice growing from an alder tree. All of it grew overnight, formed when liquid water near the outer trunk surface (beneath the bark) froze. This creates an ice front in each pore-like structure. Water inside the trunk flowed out to the ice front, pushing each hair-like strand of ice outward.

It probably does not get as cold under bark unless the bark is partly peeled off, so the hair ice comes out of bare spots in the trunk, as shown in the photo above. The air temperature got down to 26 F that night, and the tree was next to a dirt road, and thus partly exposed to the sky.

Like the needle ice that grows out of the ground, it grows relatively fast, producing relatively long hairs. From another spot, down near a meadow:


--JN

Equinox frost I: Patterns on roof, hood, window, and mirror

March 24th, 2014

Morning on the spring equinox, the first day of spring, brought a few gifts from winter. I) Film-frost, accentuated with hoar-frost on the cars.

See the white of the hoar, following a pattern set down by the thin layer of film-frost. The roof of one car:


And the roof of another:


So it went. As I walked through our parking area, I saw a different pattern on every car - a pattern that told a tale of the night's weather and evening conditions. The film frost here is dramatic because the water film was thick before it froze. And it was thick because it had been raining in the previous evening. Later that evening, the skies cleared, and the temperature dropped rapidly, ensuring that the thick film would freeze. And the warm wet weather of the previous day left plenty of vapor to deposit as hoar-frost.

Car hoods had their own story to tell:


Read more »

Video of growing ice spike

March 6th, 2014

Take about a cup of water, place in a glass flask, then plunge in liquid nitrogen. Watch.
">

What happens in that video is that the water starts to freeze from the bottom and sides of the flask, and the ice also spreads across the top surface. When the water turns to ice, it expands by about 10% and so the remaining water must be pushed aside. If a hole remains in the top ice layer, the water gets pushed out the top.

What happens next depends a lot on various, poorly studied features of the situation. But sometimes, the out-flowing water forms an ice spike like that shown above. Sometimes it doesn't. In a previous post (02/06/2011), I describe a vase-like shape that formed in an outdoor bathtub:

http://www.storyofsnow.com/admin.php?ctrl=items&blog=1&p=128

The trick of putting the flask in liquid nitrogen (about -200 C) came from Larry Wilen back in about 1989 when we were at the University of Washington. I later did the trick a few times at the University of Arizona, but I thought I'd try to perform it during a talk I gave in January, 2013. So, I went to see the chemistry-department demonstration guy, Eric Camp, at the UW, and we tried to replicate the demo. Now, in the past, I could get the spike pretty much every freeze, but Eric and I had the hardest time with it. So, in the end, I got the video, but didn't attempt the stunt at my talk.

- JN

The cup and the butterfly

February 25th, 2014

In early January, while visiting a cold, dry region, I saw this frost on a wooden fencepost.


The pattern resembled a cluster of butterflies. In the shade, these "butterflies" were blue, reflecting the blue sky. In the sun, they were bright white:


These are a type of hoar-frost, and though hoar-frost grows by the same processes as snow crystals, they can take on an even greater variety of forms. That they have more forms is a consequence of the fact that they can experience much greater levels of humidity, that is humidity relative to their temperature. This greater degree of humidity produces faster growth. Frost forms can also be more unusual because the proximity of the crystals alter the vapor gradients.

Read more »

Bending of branch and pond

February 11th, 2014


                Bending bending bending
                The fir branches are bending
                They are waiting for more snow




The famous Japanese poet Basho wrote a poem like the above, except it was about bamboo bending under the snow load.

I was reminded of Basho's poem yesterday, as we just had our first snowfall of the season. Here in Redmond, about 2 inches, just enough to bend some of the fir branches.

And not only the branches were bending.

I took the opportunity to check out the pond. It had an ice covering before the snow, but with the snow and warming trend, the ice had thinned, and gotten pressed down under the snow load. The glaze over the pond was bending. Where a hole appeared in the ice, water got pushed up and out, flowing in dark channels over the icy glaze, forming a spider-like or branch-like pattern in the now slushy snow. I climbed up a tree on the shore and took a few shots.

Read more »

Hair Ice on Wood and Pavement

January 16th, 2013

The morning after a rapid cool-down, I found hair ice on an alder log.


From a distance, it looked unnaturally white, like it was a bit of discarded cotton or white paper, but the closer I got to it, the more incredible it seemed.

Read more »

Crystal-to-crystal “communication” through vapor and heat

January 5th, 2013


Two mornings ago, I saw this on the windshield of a parked car.


The bulls-eye pattern wasn’t centered on any particular feature on the windshield, and there were similar, though less developed, patterns nearby. See them on the photo below.


The dark parts are largely frost-free regions, and thus are regions that dried out during the crystallization event. (It was still dark when I took the shots.) Later, under a brighter sky, I saw a different pattern on the hood of another car, a pattern that I figure has a similar cause. In the hood case, shown below, the dry regions are bright due to reflection of the sky.


Now, about those concentric rings …

I puzzled over a larger such pattern in the Feb. 5, 2010 posting “Ripples”. The causative process that I proposed back then seems consistent with this newer observation, but I will clarify it here.

Before the first frost formed, the windshield, though seemingly dry, nevertheless had a thin layer of liquid water. This thin film had cooled to some temperature below freezing. (See the sketch “How hoar frost forms” in the Jan. 11, 2012 posting.) As the windshield and water film continued to cool, freezing was inevitable; the only issue was where. The first such spot to freeze must have had some feature, however minute, that was advantageous to freezing. It may have been a nucleant particle (e.g., a mineral dust grain, a type of bacteria, or even a tiny fleck of ice that wafted in from somewhere else), a slightly cooler spot, or a slightly thicker water film (e.g., from a scratch or indentation). But for whatever reason, the ice formed there first.

Now suppose the ice spreads outward from the nucleation spot in all directions with about the same rate. I suspect this happens when the film is extremely thin, as it would have been under the relatively dry conditions of this day. So, the frozen film grows outward, roughly as a disc. See the sketch below; the black dot in the center is the first place that froze.


Read more »